Simulating the Driving Forces of Inequality

(Equations)

Felipe A. Motta Advisor: Samuel Bowles

August 8, 2005

Inheritance of Material Capital (B)

t: Tax

 W_i^c : Wealth of i-th couple

 B_{ji} : Bequest of j-th son of the i-th couple n_i : Number of kids of the i-th couple

Primogeniture:

$$B_{1i} = W_i^c(1-t)$$

$$B_{ji} = 0 \quad \forall j \neq 1$$

Equal Inheritance:

$$B_{ji} = \frac{W_i^c(1-t)}{n_i} \quad \forall \ j$$

Inheritance of Human Capital (H)

 \overline{W} : Mean wealth

 \overline{H} : Mean H

 H_k^i : H of i-parent k-th generation H_k^j : H of j-parent k-th generation

 ε : shock

 $b \sim \operatorname{random}[0,1]$

$$H_{k+1} = (1-\lambda)[\overline{H} + t\overline{W}] + \lambda[(1-z)(bH_k^i + (1-b)H_k^j) + zW_k^c] + \varepsilon_1$$

Assortation

r: Assortation probability

 A_i : i-th agent's assortation measurement

$$r \Rightarrow A_i = B_i^{\gamma} H_i^{1-\gamma}$$

 $1-r \Rightarrow \text{Random}$

Consumption and Investment

 B_c : Couple Bequest

 $B_c = B^i + B^j$

 B_c' : Couple bequest after consumption

I: Investment

 K_c : Normal consumption coefficient

 $c~:~\epsilon[0,1] \\ \mbox{Fraction of Bequest consumed in excess of } K_c$

if
$$(B_c \le K_c \overline{W})$$
 $B'_c = 0$ consume entire bequest

else if
$$(cB_c < K_c\overline{W})$$
 $B'_c = B_c - K_c\overline{W}$

$$else(cB_c >= K_c\overline{W})$$
 $B'_c = B_c(1-c)$

$$I = B'_c$$

Final Wealth

$$W_c$$
: Couple Wealth

 H_c : Couple H

 $H_c = H^i + H^j$

$$if(B'_c >= 1) \quad W_c = B'^{\rho}_c H^{\delta}_c + \varepsilon_2$$

$$\mathbf{else}(B_c'<1) \quad W_c = H_c^{\delta} + \varepsilon_2$$

Reproduction

N: Total population

 n_i : No. of kids of the i-th couple

 $\alpha_i \quad : \quad \frac{W_i^c}{\sum_j^{N/2} W_j^c}$

 $n_i = (1 - \mu)2 + \mu(\alpha_i N)$

Progressive Tax Function

x : Parent's wealth

f(x): Bequest as a function of parent's wealth

 K_e : Minimum taxable wealth coefficient

 K_a : Maximum bequest coefficient

 $f(k_e \overline{W}) = K_e \overline{W}$

 $f'(k_e\overline{W}) = 1$

 $\lim_{x \to \infty} f(x) = k_a \overline{W}$

 $f(x) = \frac{(x - k_e \overline{W})(k_a \overline{W} - k_e \overline{W})}{(x + k_a \overline{W} - 2 * k_e \overline{W})} + k_e \overline{W}$

Parameters

 μ : Weight of wealth in reproduction

 λ : Weight of H inheritance from parents

 γ : Relative importance of B in assortation

 ρ : Importance of Investment on wealth

 δ : Importance of H on wealth

r : Assortation Probability

 K_e : Minimum taxable wealth coefficient

 K_a : Maximum bequest coefficient

 K_c : Normal consumption coefficient

 $c: \epsilon[0,1]$ Fraction of Bequest consumed in excess of K_c

z : Weight of parent's wealth on the inheritance of H

 ε_1 : Shock to H

 ε_1 : Shock to wealth