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Abstract

Colony Collapse Disorder has drawn attention to just how dependent

we are on pollinators. However, while we are still trying to figure out

what pathogen might cause the phenomenon, the dynamics and spread

are still widely unknown.

We adapt the traditional SIR model for malaria ecology to model dis-

ease dynamics in a pollinator species. We then examine potential treat-

ments, looking for a method of treatment that will enable hive survival

and examining changes in long term behavior.

1 Introduction

In 2006, commercial bee keepers up and down the east coast noticed a phe-
nomenon that came to be called Colony Collapse Disorder. CCD is unlike other
known bee diseases in that it is characterized by the disappearance of adult bees
while healthy brood and food stores remain in the hive.

Since 2006, CCD has spread nationwide and affects 30-40% of bees annually,
in both commercial and non-commercial hives. Very little is known about the
disease. Those dead bees that have been recovered are typically infected with
numerous pathogens, so that it is difficult to determine the original infection.
Suggested causes include the parasite Nosema ceranae and several viruses. Re-
searchers are investigating these pathogens, as well as pesticide poisoning and
a combination of environmental stresses as potential causes.

The flurry of panic triggered by colony collapse disorder has reminded us
just how dependent we are on bees for pollination. Honeybees as commercial
pollinators are a 15 billion dollar industry. They are the largest agricultural
pollinators, pollinating 60% of all alfalfa, hay and seed among other crops.

Additionally, honeybees are generalist pollinators, pollinating almost every
plant species. This provides a important stabilizing force for ecological networks,
something that’s likely especially important as habitat destruction and global
temperature increase affect the life cycles of other pollinator species.
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2 Methods

In this project, we adapted a traditional SIR model to model infection in bee
populations. We used the Manipulate function in Mathematica to vary the
parameters and look for changes in long-term dynamics. Those plots shown
here are representative samples of the long-term behaviour, with parameters
being uniform across all plots, with α = 0.1, β = 0.75, δ1 = 0.05, δ2 = 0.75,
δ3 = 0.025, γ = 0.2, a = 0.25, b = 0.75, r = 0.97 and j = 0.3.

3 SIR Model

An SIR model is a traditional model for disease dynamics. This is a model for
disease dynamics within a population, where S stands for susceptible individuals
- those who can catch the disease, I stands for infected individuals - those who
can transmit the disease and R stands for resistant individuals - those who
cannot catch the disease.

For example, traditional dynamics for a population infected with a virus that
causes immunity in individuals who have recovered is S → I → R , represented
by the equations:

dS

dt
= −rSI,

dI

dt
= rSI − aI,

dR

dt
= aI.

Here, 1 > r > 0 is the infection rate and a > 0 is the recovery rate.

Two things make this model unsuitable for our purposes. One is that the
equations in the traditional SIR model sum to zero. This is because the model
usually focuses on examining short term dynamics of human diseases. However,
bees reproduce very quickly and we cannot assume them to have a constant
population.

The next problem with the traditional model is the omission of vector dy-
namics. Typically this is done because any vector species reproduces relatively
quickly compared to humans, so we can assume the vector population is at equi-
librium with respect to the infected population. However, just as bees reproduce
fairly quickly, they also have a relatively short individual life span, so probably
will not outlive any vector population, so we must modify this model.

4 Our Model

Bees reproduce constantly. In species where only the queen reproduces, she
does so at a rate proportional to the population of adults in the hive. Since the
population of adult bees is rather large and grows fairly constantly, we assume
it to be continuous.
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This continuous growth is important, however. Bee populations typically
crash during the winter, a time when food is relatively scarce and the environ-
ment is hostile. In order for a hive to survive the winter, it must have a large
population compared to the previous spring, so exponential growth during the
pollination season is important. For this reason, we do not include a carrying
capacity in our model.

One last assumption that makes our model different from the standard SIR

model is the resistant class. To explain why only adult bees are afflicted, we
propose flowers as vectors with no disease transmission between bees, only be-
tween bees and flowers during the pollination interaction. The resistant class is
then the brood, which eventually matures into adults. However, between birth
and maturity, young bees are fed nearly constantly, up to 10,000 times during
that period. This means brood can die of neglect.

Figure 1: A representation of our model. Susceptible individuals become in-
fected through interaction with a contagious plant. A plant becomes infected
through interaction with an infected individual. Both populations of adults -
the susceptibles and infecteds - reproduce at a constant rate to produce the
resistant class, which eventually matures into the susceptible class.

The system of equations representing this is:

dS

dt
= αR− βSIP − δ1S,

dI

dt
= βSIP − δ2I,

dR

dt
= γ(S + I)(SP + IP )− αR− δ3

R

S+I
,

dSP

dt
= aIP − bSP I,

dIP

dt
= bSP I − aIP .

Here, S is the population of adult susceptible bees, I is the population of adult
infected bees, R is the resistant class, or the brood, SP is the non-contagious
flowers and IP are the contagious flowers. Resistant bees mature at a constant
rate α, and die of neglect at a rate δ3

R

S+I
. This last term gets large as R gets

large relative to S+I and gets small as S+I get large relative to R, so it makes
intuitive sense as a rate at which young die of neglect. Susceptible bees die of
unspecified causes at a rate δ1 and become infected at a proportion β of their
interactions with contagious plants. Infected bees die at a rate δ2, presumably
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greater than δ1. Lastly, both adult populations, S and I reproduce at a constant
rate γ, also dependent on the available food supply.

The sum of the plant populations in these equations, SP+IP , is constant. This
is because this is a seasonal model of colony collapse disorder, intended to reflect
dynamics within a single pollination period, when the population of plants is
relatively constant. That said, non-contagious plants do become infected at a
fraction b of their interactions with infected bees, but contagious plants become
non-contagious at a rate a.

When the population is uninfected, both R and S grow exponentially, which
is what we expect to see. Exponential growth is good for the hive, because the
population will crash when winter comes.

Figure 2: A sample trajectory of the exponential growth of populations R and
S when the population is uninfected.
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However, when the population is infected, all populations eventually reach a
stable equilibrium, at . This is bad news for the hive as approaching a stable
equilibrium means that when winter comes, the population will not have grown
enough for the hive to survive, and the hive will collapse.
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Figure 3: A sample trajectory of the populations reaching a stable equilibrium
in the presence of infection.
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5 Treatment

One of the advantages to having a simple mathematical model for disease dy-
namics is that it can be used to model treatment. In this case, we examined
various realistic treatment methods, looking for one that returned the behaviour
of the system to that of its uninfected state. However, the population will crash
every winter, which is not included in our model. Since evidence suggests that
the disease acts as an immunodeficiency disease, it’s reasonable to assume that
during the population crash, infected bees will die first and the infection will die
off. As such, a successful treatment might be one that only temporarily restores
exponential growth, since we do not have a good idea of how long the season is.

In order to model actual treatment, treatment takes effect when an infection
is noticed. In this case, we say that an infection is noticed when the total adult
population reaches some low fraction of the initial adult population.

The first and most intuitive treatment for an infection is to treat infected
individuals. Our model for this treatment is:

dS

dt
=

{

αR− βSIP − δ1S, if S + I > j(S0 + I0)

αR− βSIP − δ1S + rI, if S + I ≤ j(S0 + I0)

dI

dt
=

{

βSIP − δ2I, if S + I > j(S0 + I0)

βSIP − δ2I − rI, if S + I ≤ j(S0 + I0)
dR

dt
= γ(S + I)(SP + IP )− αR − δ3

R

S+I
,

dSP

dt
= aIP − bSP I,

dIP

dt
= bSP − aIP .

This is not an effective treatment. Rather than restoring the dynamics to that
of the uninfected system, this treatment causes the system to stabilize faster,
providing no opportunity for the population to grow.
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Figure 4: A sample trajectory of this treatment. The sharp corners occur where
the treatment takes effect. In this graph, j = 0.5, for ease of visibility.
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Depending on the type of pathogen and method of treatment, treated bees
might be immunized against further infection. For example, individuals treated
for a viral infection develop an immunity to further infection by that virus. In
this case, that can be modelled by:

dS

dt
= αR− βSIP − δ1S

dI

dt
=

{

βSIP − δ2I, if S + I > j(S0 + I0)

βSIP − δ2I − rI, if S + I ≤ j(S0 + I0)
dR

dt
= γ(S + I)(SP + IP )− αR− δ3

R

S+I
,

dP

dt
=

{

0, if S + I > j(S0 + I0)

rI, if S + I ≤ j(S0 + I0)
dSP

dt
= aIP − bSP I,

dIP

dt
= bSP − aIP ,

where P is the population of bees that is immune to reinfection.

Unlike just treating bees, this method of treatment is not stabilizing, but
the population still approaches an equilibrium eventually. In the meantime,
however, it spikes.
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Figure 5: A sample trajectory of the bee immunization treatment. The sharp
corners occur where the treatment takes effect.
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However, when fighting a vector-borne illness, treating infected individuals is
not the only approach. Treating vectors is also possible. In this case, treating
the vectors might actually be easier because beekeepers could spray entire fields
with treatment. I modelled this form of treatment by:

dS

dt
= αR− βSIP − δ1S,

dI

dt
= βSIP − δ2I,

dR

dt
= γ(S + I)(SP + IP )− αR− δ3

R

S+I
,

dSP

dt
=

{

aIP − bSP I, if S + I > j(S0 + I0)

aIP − bSP I + rIP , if S + I ≤ j(S0 + I0)

dIP

dt
=

{

bSP I − aIP , if S + I > j(S0 + I0)

bSP I − aIP − rIP , if S + I ≤ j(S0 + I0)

Unlike treatment of bees, treatment of plants is not stabilizing, instead briefly
increasing exponential growth, although not doing so by a large amount.
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Figure 6: A sample trajectory of plant treatment.
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However, spraying fields with treatment might make the fields a bad vector
for the pathogen, effectively immunizing the plants from becoming contagious.
I modelled this effect with the equations:

dS

dt
= αR − βSIP − δ1S,

dI

dt
= βSIP − δ2I,

dR

dt
= γ(S + I)(SP + IP )− αRδ3

R

S+I
,

dSP

dt
= aIP − bSP I,

dIP

dt
=

{

bSP I − aIP , if S + I > j(S0 + I0)

bSP − aIP − rIP , if S + I ≤ j(S0 + I0)

dPP

dt
=

{

0, if S + I > j(S0 + I0)

rIP , if S + I ≤ j(S0 + I0)
,

where PP is the fraction of plants that can no longer become contagious.

As immunizing bees was much better than simply treating them, so immu-
nizing plants was much better than simply treating them. This makes some
intuitive sense, since reducing the population of susceptible individuals is a com-
mon way of fighting epidemics - it’s the rationale behind the whole vaccination
movement.
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Figure 7: A sample trajectory of the dynamics of plant immunization.
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If a treatment were developed that cured any infected bees but did not cause
an immunity, it might make sense to apply that treatment to both bees and
plants. I modelled that with the equations:

dS

dt
=

{

αR− βSIP − δ1S, if S + I > j(S0 + I0)

αR− βSIP − δ1S + rI, if S + I > j(S0 + I0)

dI

dt
=

{

βSIP − δ2I, if S + I > j(S0 + I0)

βSIP − δ2I − rI, if S + I ≤ j(S0 + I0)
dR

dt
= γ(S + I)(SP + IP )− αR − δ3

R

S+I
,

dSP

dt
=

{

aIP − bSP I, if S + I > j(S0 + I0)

aIP − bSP I + rIP , if S + I ≤ j(S0 + I0)

dIP

dt
=

{

bSP I − aIP , if S + I > j(S0 + I0)

bSP I − aIP − rIP , if S + I ≤ j(S0 + I0)

This treatment actually is more effective than just treating bees, but not any
more effective than just treating the field. This is due to the stabilizing effect
of treating the bee population.
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Figure 8: A sample trajectory of treatment of both plant and bee infected
populations.
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Lastly, we could immunize both plants and bees. Intuitively, this method
seems like it would be effective as both component methods were effective. I
modelled this with the following equations:

dS

dt
= αR− βSIP − δ1S

dI

dt
=

{

βSIP − δ2I, if S + I > j(S0 + I0)

βSIP − δ2I − rI, if S + I ≤ j(S0 + I0)
dR

dt
= γ(S + I)(SP + IP )− αR− δ3

R

S+I
,

dP

dt
=

{

0, if S + I > j(S0 + I0)

rI, if S + I ≤ j(S0 + I0)
dSP

dt
= aIP − bSP I,

dIP

dt
=

{

bSP I − aIP , if S + I > j(S0 + I0)

bSP I − aIP − rIP , if S + I ≤ j(S0 + I0)

dPP

dt
=

{

0, if S + I > j(S0 + I0)

rIP , if S + I ≤ j(S0 + I0)

Out of the six options so far, this was the best, with the biggest exponential
growth.
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Figure 9: A sample trajectory of immunization of both plant and be infected
populations.
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Unrealistically, there are other potential treatments. One is to simply add
susceptible plants so that the bee reproduction rate goes up. We can model this
by:

dS

dt
= αR− βSIP − δ1S,

dI

dt
= βSIP − δ2I,

dR

dt
= γ(S + I)(SP + IP )− αR− δ3

R

S+I
,

dSP

dt
=

{

aIP − bSP I, if S + I > j(S0 + I0)

aIP − bSP I + r(SP + IP ), if S + I ≤ j(S0 + I0)
dIP

dt
= bSP I − aIP .

In this model, when the population of adult bees dips sufficiently far below
the initial population, plants are added continuously until the population rises
again. This promotes exponential growth in the bee population, however, it
doesn’t eliminate the infection. Additionally, this is unlikely to be how the
population would actually respond to an increase in plants.

6 Conclusions and Further Work

If it turns out that plants are a vector for CCD or another bee pathogen, it’s clear
from this model that we should treat the plants instead of the bees. However,
there is much missing from this model.

The SIR model presents a very idealized model for disease ecology. Without
data, it’s difficult to say whether this model realistically models a disease like
CCD. But such data is difficult to collect. Even commercial bee keepers do not
keep constant watch over their hives, because hives are generally robust com-
munities. As such, little is known about the onset of colony collapse disorder.
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Additionally, it’s still a mystery why workers are the only ones afflicted and
why commercial hives are the most at risk. Stress is a good suggestion and a
known cause of disease in other organisms. However, it’s possible that commer-
cial hives are more at risk because they travel more and pollinate more fields. If
flowers really are vectors, than it would make sense that the more hives whose
pollination area a hive overlaps with, the more at risk that hive is for disease.

Not only is this model idealized, but it deals with seasonal dynamics within
a single hive. Ideally, the model would look at hives as the population, and
examine yearly dynamics. This is made somewhat easy by the fact that hives
collapse in winter, so a stochastic model in discrete time could accurately model
these conditions. Another factor too include in this model would be the ability
of different plants to be a medium for disease. Are some plants better vectors?
Do pollinating more species make a hive more or less at risk for infection? Both
of these would be good things to know going forward.

Finally, CCD was first observed in 2006, the same year white nose was first
observed in bats. It would be interesting to study the disease interactions of
insects and their predators and examine whether or not the two diseases are
related.
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